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Web Appendix: Theoretical Part

The theoretical part of the Web Appendix provides a more detailed derivation of the proposi-

tions in the paper. It also explores the implications of an alternative formulation for the liquidity

supply.

Alternative Liquidity Supply Formulations

A critical part of the model is the structure of the liquidity supply characterized by the as-

sumptions A and B1 (or B2).

A: Liquidity suppliers are informed about the index change only with a delay at time

tL, compared to the speculators, who are informed earlier at time tA < tL.

The analysis needs to distinguish expectations which incorporate knowledge of the demand

shock (denoted eEt(.)) from expectations which do not (denoted by E t(.)).

B1: Assumption 2 of the model states that the liquidity supply is linear and indepen-

dent for each stock. Formally, the total liquidity supply is given by

(1− λ)γELt (pt+∆t − pt).

This liquidity supply corresponds to a setting in which of investors (with low risk aversion) have

heterogenous valuations for the each individual stock. As the current price pt moves below (above)

the value ELt (pt+∆t), more (less) investors are willing to own the asset. Note that neither a risk

aversion parameter nor covariance risk enters this liquidity supply formulation. A shorter interval

∆t for the price change is also irrelevant to the liquidity supply function. Under assumptions

A and B1, both the premium change Σu as well as the hedging term ΣΣu influence equilibrium

prices.

B2: Alternatively, I assume that the liquidity supply does not occur ‘stock by stock’

(as in B1), but depends on the covariance risk across assets captured by the term
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ρLΣ, where the parameter ρLdenotes the risk aversion of the liquidity providers. The

aggregate liquidity supply is given by

(1− λ)
¡
ρLΣ

¢−1 ELt (pt+∆t − pt).

Under assumptions A and B2, only the premium change Σu, but not the hedging term ΣΣu,

is price relevant as is shown in on the following pages.

Both liquidity formulations share the general form (1−λ) (V )−1 ELt (pt+∆t−pt), where assump-

tion B1 corresponds to V = γ−1I and B2 to V = ρLΣ. The research paper focuses on the case

B1 as the empirically relevant one. In this Web Appendix, I also provide a solution for the case

in which assumption A is combined with B2. I will generally assume that the mass of liquidity

providers is small so that λ ≈ 1.

Market Clearing Conditions

For a mass λ of speculators and a mass 1 − λ of liquidity suppliers, the market clearing

conditions follow as

λ(ρΣ∆t)−1E t(p∗t+∆t − pt) + (1− λ)(V )−1E t(pt+∆t − pt) = eSo for 0 ≤ t < tA,

λ(ρΣ∆t)−1 eEt(pt+∆t − pt) + (1− λ)(V )−1E t(pt+∆t − pt) = eSo for tA ≤ t < tL,

λ(ρΣ∆t)−1 eEt(pt+∆t − pt) + (1− λ)(V )−1 eEt(pt+∆t − pt) = eSo for tL ≤ t < tu,

λ(ρΣ∆t)−1 eEt(pt+∆t − pt) + (1− λ)(V )−1 eEt(pt+∆t − pt) = eSo − u for tu ≤ t < T,

(1)

where the LHS terms in (1) represent the respective asset demand of the speculators and the

liquidity suppliers; eS denotes the total asset supply (net of index capital) and u = ϑ(wn − wo)

the demand shock of index capital at time tu. By assumption, arbitrageurs learn about the index

change at time tA < tu, whereas liquidity suppliers do so only at time tL with tA < tL < tu. The

expected terminal asset price is identical for both groups and is given by

Et=k∆t(pT ) = 1+
k∆tX
t=∆t

∆εt.
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Equilibrium under Assumptions A and B1

In this case we have V = γ−1I. The expected equilibrium return r4∆t = eEt(pt+∆t − pt) from t

to t+∆t for tu ≤ t < T follows directly from equation (1) as

r4∆t = eEt(pt+∆t − pt) =
£
λ(ρΣ∆t)−1 + (1− λ)γI

¤−1 ³eSo − u
´

=
h
I + (1− λ)γ

ρ

λ
Σ∆t

i−1 ρ
λ
Σ
³eSo − u

´
∆t

≈
h
I − (1− λ)γ

ρ

λ
Σ∆t

i ρ
λ
Σ
³eSo − u

´
∆t

≈ ρ

λ
Σ
³eSo − u

´
∆t,

where I use the approximation [I + kΣ∆t]−1 ≈ I − kΣ∆t for small k∆t and ignore terms of order

(∆t)2. The approximation also becomes accurate if ρ/λ becomes small.

For the period tL ≤ t < tu, the supply change u is not yet effective; hence the expected return

simplifies to

r3∆t ≈ ρ

λ
ΣeSo∆t.

The asset price follows (by recursive substitution) as

pt ≈

⎧⎨⎩ Et(pT )− (T − tu)r4 − (tu − t)r3 for tL ≤ t < tu,

Et(pT )− (T − t)r4 for tu ≤ t < T.
(2)

For the period tA ≤ t < tL, expectations about the correct equilibrium price differ between

arbitrageurs, who know about the demand shock u, and liquidity suppliers, who do not. Hence,

expectations are given by

eEtL−∆t(ptL) = EtL−∆t(pT )− (T − tu)r4 − (tu − tL)r3,

E tL−∆t(ptL) = EtL−∆t(pT )− (T − tu)r3 − (tu − tL)r3,

and the valuation difference between liquidity suppliers and arbitrageurs follows as

E tL−∆t(ptL)− eEtL−∆t(ptL) = (T − tu)(r4 − r3) = −
ρ

λ
Σu(T − tu). (3)

The market-clearing condition in equation (1) for t = tL − ∆t implies (under substitution of
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equation (3)) that

ptL−∆t =
£
λ(ρΣ∆t)−1 + (1− λ)γI

¤−1 h−eSo + λ(ρΣ∆t)−1 eEtL−∆t(ptL) + (1− λ)γE tL−∆t(ptL)
i

=
£
λ(ρΣ∆t)−1 + (1− λ)γI

¤−1
×
h
−eSo +

£
λ(ρΣ∆t)−1 + (1− λ)γI

¤ eEtL−∆t(ptL) + (1− λ)γ(T − tu)(r4 − r3)
i

= eEtL−∆t(ptL) +
£
λ(ρΣ∆t)−1 + (1− λ)γI

¤−1 h−eSo + (1− λ)γ(T − tu)(r4 − r3)
i

= eEtL−∆t(ptL)−
ρ

λ
Σ∆t

h
I + (1− λ)γ

ρ

λ
Σ∆t

i−1 heSo − (1− λ)γ(T − tu)(r4 − r3)
i
.

Using the approximation
£
I + (1− λ)γ ρ

λ
Σ∆t

¤−1 ≈ I − (1− λ)γ ρ
λ
Σ∆t and ignoring terms of order

(∆t)2 yields

ptL−∆t ≈ eEtL−∆t(ptL)−
ρ

λ
Σ∆t

h
I − (1− λ)γ

ρ

λ
Σ∆t

i heSo − (1− λ)γ(T − tu)(r4 − r3)
i

≈ eEtL−∆t(ptL)−
ρ

λ
ΣeSo∆t− (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)∆t.

The equilibrium return for t = tL −∆t then follows as

r2∆t = eEtL−∆t(ptL)− ptL−∆t ≈
ρ

λ
ΣeSo∆t+ (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)∆t.

Similarly, for t = tL − 2∆t I obtain the expressions

E tL−2∆t(ptL−∆t)− eEtL−2∆t(ptL−∆t) = (T − tu)(r4 − r3) + (r2 − r3)∆t

and

ptL−2∆t ≈ eEtL−2∆t(ptL−∆t)−
ρ

λ
Σ∆t

h
I − (1− λ)γ

ρ

λ
Σ∆t

i
×
heSo − (1− λ)γ(T − tu)(r4 − r3)− (1− λ)γ(r2 − r3)∆t

i
≈ eEtL−2∆t(ptL−∆t)−

ρ

λ
ΣeSo∆t− (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)∆t+ Λ∆t

≈ eEtL−∆t(ptL−∆t)−
ρ

λ
ΣeSo∆t− (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)∆t,

where the cubic term Λ∆t = (1− λ)γ
¡
ρ
λ

¢3
ΣΣΣu(T − tu)(∆t)2 ≈ 0 is ignored. Selling of hedging

positions over the period tA ≤ t < tL produces return effects, which again generates additional

higher-order hedging demands. By ignoring such higher-order hedging effects, I find again

r2∆t = eEtL−2∆t(ptL−∆t)− ptL−2∆t ≈
ρ

λ
ΣeSo∆t+ (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)∆t.
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Repeated substitution (while ignoring the cubic hedging terms) implies for the equilibrium price

pt ≈ Et(pT )− (T − tu)r4 − (tu − tL)r3 − (tL − t)r2. (4)

The sum of the approximation errors coming from k = 1, 2, 3, ...,K = (tL − tA)/∆t cubic terms

with Λk∆t = (1− λ)γ
¡
ρ
λ

¢3
ΣΣΣu(T − tu)k(∆t)2 is given by

KX
k=1

Λk∆t = (1− λ)γ
³ρ
λ

´3
ΣΣΣu(T − tu)

1

2
(tL − tA) = βΛΣΣΣ(w

n − wo),

where I define βΛ = (1−λ)γ
¡
ρ
λ

¢3
(T − tu)

1
2
(tL− tA). The sum of the (cubic) approximation errors

is small relative to the quadratic hedging term β1ΣΣ(w
n−wo) in proposition 1 if −βΛ/β1 =

1
2

¡
ρ
λ

¢
is small.

It is instructive to characterize the speculative positions of the arbitrageurs, which can be

stated as

xAt = eSo − xLt = eSo − (1− λ)γE t(pt+∆t − pt). (5)

Substituting the expectations of the liquidity suppliers, given by E t(pt+∆t) = Et(pT )−(T−t−∆t)r3,

into equation (5) and then using equation (4) implies that

xAt = eSo − (1− λ)γ
£
E t(pt+∆t)− pt)

¤
≈ eSo − (1− λ)γr3∆t− (1− λ)γ [−(T − t)r3 + (T − tu)r4 + (tu − tL)r3 + (tL − t)r2]

≈ eSo − (1− λ)γr3∆t− (1− λ)γ [(T − tu)(r4 − r3) + (tL − t)(r2 − r3)]

≈ eSo − (1− λ)γr3∆t+ (1− λ)γ
ρ

λ
Σu(T − tu)− (1− λ)2γ2

³ρ
λ

´2
ΣΣu(T − tu)(tL − t).

Speculative positions are therefore positively proportional to Σu and negatively proportionally to

ΣΣu. The latter term represents the hedging position, which decrease linearly as tL comes closer.

Finally, the price process for the initial period follows as

pt ≈ Et(pT )− (T − t)r3 for 0 ≤ t < tA. (6)

The entire price path (adjusted for the expected liquidation value Et(pT )) is plotted in Figure 1.
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Proof of Proposition 1

I determine the price reaction when the speculators learn about the demand shock u = ϑ(wn−

wo) at time t = tA. This price effect may be written as

ptA − ptA−∆t ≈ EtA−∆t(pT ) +∆εtA−∆t − (T − tu)r4 − (tu − tL)r3 − (tL − tA)r2

− [EtA−∆t(pT )− (T − tA +∆t)r3]

= r3∆t− (T − tu)(r4 − r3)− (tL − tA)(r2 − r3) +∆εtA−∆t

=
ρ

λ
ΣeSo∆t+

ρ

λ
Σu(T − tu)− (1− λ)γ

³ρ
λ

´2
ΣΣu(T − tu)(tL − tA) +∆εtA−∆t

=
ρ

λ
ΣeSo∆t+ α1Σ(w

n − wo) + β1ΣΣ(w
n − wo) +∆εtA−∆t.

After subtracting the expected return ρ
λ
ΣeSo∆t for the interval ∆t, the excess return is given by

∆rt=tA = ptA − ptA−∆t −
ρ

λ
ΣeSo∆t ≈ α1Σ(w

n − wo) + β1ΣΣ(w
n − wo) +∆εtA−∆t

with

α1 =
ρ

λ
ϑ(T − tu) and β1 = −(1− λ)γ

³ρ
λ

´2
ϑ(T − tu)(tL − tA).

The term α1Σ(w
n − wo) represents the return seeking component and the term β1ΣΣ(w

n − wo)

represents the risk hedging component. The latter is proportional to the duration of the arbitrage

position given by tL − tA.

Proof of Proposition 2

Consider the equilibrium price sequence derived in the proof of Proposition 1. For the trading

period tA ≤ t < tL, the expected return between t and t+∆t is approximated by

Etpt+∆t − pt ≈
ρ

λ
ΣeSo∆t+ (1− λ)γ

³ρ
λ

´2
ΣΣ(T − tu)u∆t.

The expected excess return over the interval [tA, tL] then follows as

r[tA,tL] =
X

t∈[tA,tL]

pt − pt−∆t −
ρ

λ
ΣeSo∆t ≈ β2ΣΣ(w

n − wo),

where β2 = −β1.
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Approximation Quality

The solutions given in Propositions 1 and 2 represent approximations in which terms of order

(∆t)2 and higher are neglected. An exact solution can be obtained in the limit case of ∆t → 0.

The price process is then characterized by a system of stochastic equations. Let pt be the price

process, and denote by pt the beliefs of a market participant who is uninformed about the demand

shock u. The market-clearing conditions translate into the following stochastic system:

dpt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ
λ
Σ(eSo − u)dt+ dεt for tu ≤ t < T,

ρ
λ
ΣeSodt+ dεt for tL ≤ t < tu,

ρ
λ
ΣeSodt− (1− λ)γ ρ

λ
Σ(pt − pt)dt+ dεt for tA ≤ t < tL,

dpt for 0 ≤ t < tA;

dpt =
ρ
λ
ΣeSodt+ dεt for 0 ≤ t < T.

Here Φt =
R t
s=0

dεt and the boundary condition pT = pT = 1 + ΦT holds. The term pt − pt

captures the asset valuation gap between liquidity providers and speculators for tA ≤ t < tL. The

corresponding equation is obtained by substituting

eEt−dt(pt) = pt − dεt

E t−dt(pt) = pt − dεt

into the market clearing condition, which gives

pt−dt =
£
λ(ρΣdt)−1 + (1− λ)γI

¤−1 h−eSo + λ(ρΣdt)−1 eEt−dt(pt) + (1− λ)γE t−dt(pt)
i

=
£
λ(ρΣdt)−1 + (1− λ)γI

¤−1 h−eSo + λ(ρΣdt)−1pt + (1− λ)γpt

i
− dεt

=
£
λ(ρΣdt)−1 + (1− λ)γI

¤−1 × h−eSo +
£
λ(ρΣdt)−1 + (1− λ)γI

¤
pt + (1− λ)γ (pt − pt)

i
− dεt

= pt −
ρ

λ
Σdt

h
I + (1− λ)γ

ρ

λ
Σdt

i−1 heSo − (1− λ)γ (pt − pt)
i
− dεt

≈ pt −
ρ

λ
Σdt

h
I − (1− λ)γ

ρ

λ
Σdt

i heSo − (1− λ)γ (pt − pt)
i
− dεt.

Ignoring terms of order dt2 implies

dpt =
ρ

λ
ΣeSodto − (1− λ)γ

ρ

λ
Σ (pt − pt) dt+ dεt.

The price system no longer follows a linear function in t − T as it did in equations (2),(4)

and (6); instead, the expected price path evolves as a combination of exponential terms eri(t−T )
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(i = 1, 2, 3, 4). Ignoring terms of order (∆t)2 and higher implies an approximation error equal to

the difference between an exponential growth path and its linear approximation at t = T . The

approximation is relatively accurate for modest equity return levels ri and when the time interval

under consideration is relatively short.

Equilibrium under Assumptions A and B2

Here I consider the case V = ρLΣ. Expected equilibrium returns are now denoted as r0∆t. For

the last period tu ≤ t < T, the market-clearing condition (1) implies

r04∆t = eEt(pt+∆t − pt) =
£
λ(ρΣ∆t)−1 + (1− λ)(ρLΣ)−1

¤−1 ³eSo − u
´

=

∙
I +

(1− λ)ρ

λρL
I∆t

¸−1
ρ

λ
Σ
³eSo − u

´
∆t

= τ
ρ

λ
Σ
³eSo − u

´
∆t

where I define τ =
³
1 + (1−λ)ρ

λρL
∆t
´−1

. If the mass of the liquidity suppliers is small (λ ≈ 1) or

their risk aversion large relative to the arbitrageurs (ρ/ρL ≈ 0), then (1−λ)ρ/λρL ≈ 0 and τ ≈ 1.

For the period tL ≤ t < tu, the supply change u is not yet effective; hence the expected return

simplifies to

r03∆t ≈ τ
ρ

λ
ΣeSo∆t.

The asset price follows (by recursive substitution) as

pt ≈

⎧⎨⎩ Et(pT )− (T − tu)r
0
4 − (tu − t)r03 for tL ≤ t < tu,

Et(pT )− (T − t)r04 for tu ≤ t < T.
(7)

For the period tA ≤ t < tL, expectations about the correct equilibrium price differ between

arbitrageurs, who know about the demand shock u, and liquidity suppliers, who do not. Hence,

expectations are given by

eEtL−∆t(ptL) = EtL−∆t(pT )− (T − tu)r
0
4 − (tu − tL)r

0
3,

E tL−∆t(ptL) = EtL−∆t(pT )− (T − tu)r
0
3 − (tu − tL)r

0
3,

and the valuation difference between liquidity suppliers and arbitrageurs follows as

E tL−∆t(ptL)− eEtL−∆t(ptL) = (T − tu)(r
0
4 − r03) = −τ

ρ

λ
Σu(T − tu). (8)
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The market-clearing condition in equation (1) for t = tL − ∆t implies (under substitution of

equation (3)) that

ptL−∆t =
£
λ(ρΣ∆t)−1 + (1− λ)(ρLΣ)−1

¤−1
×
h
−eSo + λ(ρΣ∆t)−1 eEtL−∆t(ptL) + (1− λ)(ρLΣ)−1E tL−∆t(ptL)

i
=

£
λ(ρΣ∆t)−1 + (1− λ)(ρLΣ)−1

¤−1
×
h
−eSo +

£
λ(ρΣ∆t)−1 + (1− λ)(ρLΣ)−1

¤ eEtL−∆t(ptL) + (1− λ)(ρLΣ)−1(T − tu)(r
0
4 − r03)

i
= eEtL−∆t(ptL) +

£
λ(ρΣ∆t)−1 + (1− λ)(ρLΣ)−1

¤−1 h−eSo + (1− λ)(ρLΣ)−1(T − tu)(r
0
4 − r03)

i
= eEtL−∆t(ptL)− τ

ρ

λ
Σ∆t

heSo − (1− λ)(ρLΣ)−1(T − tu)(r4 − r3)
i

= eEtL−∆t(ptL)− τ
ρ

λ
ΣeSo∆t+ τ

(1− λ)ρ

λρL
∆t(T − tu)(r4 − r3)

≈ eEtL−∆t(ptL)− τ
ρ

λ
ΣeSo∆t,

where I use the approximation (1 − λ)ρ/λρL ≈ 0. The equilibrium return for t = tL − ∆t then

follows as

r02∆t = eEtL−∆t(ptL)− ptL−∆t ≈ τ
ρ

λ
ΣeSo∆t = r03∆t.

Similarly, for t = tL − 2∆t I obtain the expressions

E tL−2∆t(ptL−∆t)− eEtL−2∆t(ptL−∆t) = (T − tu)(r
0
4 − r03)

and

ptL−2∆t ≈ eEtL−2∆t(ptL−∆t)− τ
ρ

λ
Σ∆t

×
heSo − (1− λ)(ρLΣ)−1(T − tu)(r4 − r3)

i
= eEtL−2∆t(ptL−∆t)− τ

ρ

λ
ΣeSo∆t+ τ

(1− λ)ρ

λρL
∆t(T − tu)(r4 − r3)

≈ eEtL−∆t(ptL−∆t)− τ
ρ

λ
ΣeSo∆t

where I use again (1− λ)ρ/λρL ≈ 0. Repeated substitution implies for the equilibrium price

pt ≈ Et(pT )− (T − tu)r
0
4 − (tu − tL)r

0
3 − (tL − t)r03. (9)

Finally, the price process for the initial period is found to be

pt = Et(pT )− (T − t)r03 for 0 ≤ t < tA. (10)
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The entire price path (adjusted for the expected liquidation) is plotted in Figure 2 of the Web

Appendix. For the case with (1 − λ)ρ/λρL ≈ 0, the entire price adjustment (consisting only of

the return chasing effect α1 [Σ(wn − wo)]j) occurs at time tA. Hedging terms ΣΣu do not play

any role in the price dynamics.
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Figure 1: The price dynamics under assumptions A and B1 for asset j are depicted (net of the

expected liquidation value E(pT )) for the case α1 [Σ(wn − wo)]j > 0 and β1 [ΣΣ(w
n − wo)]j < 0.

At time tA risk arbitrageurs learn about the demand shock wn − wo, that occurs at time tu.

Liquidity suppliers learn about the demand shock only at time tL > tA.
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Figure 2: The price dynamics under assumptions A and B2 for asset j are depicted (net of the

expected liquidation value E(pT )) for the case α1 [Σ(wn − wo)]j > 0 and (1 − λ)ρ/λρL ≈ 0. At

time tA risk arbitrageurs learn about the demand shock wn−wo, that occurs at time tu. Liquidity

suppliers learn about the demand shock only at time tL > tA.
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Web Appendix: Empirical Part

The empirical part of the Web Appendix provides additional robustness tests. Table A1

provides correlation statistics for the independent variables across different data samples. The

market integration test in Table 5 is reproduced in Table A2 for these two extended samples. Table

A3 examines robustness of the inference with respect to various factor models of the covariance

matrix. Table A4 reexamines the direct price pressure hypothesis using the un-scaled weight

change wn −wo as a control variable. Table A5 reports average stock returns for 25 stock groups

double sorted by un-scaled weight changes and the optimal portfolio weights according to the

model.
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Table A1: Correlation Statistics for the Indpendent Variables Across Different Samples

The correlation of four independent variable is calculated across three different samples of N1 = 2, 191, N2 = 2, 349 and N3 = 2, 414 observations. The
independent variables are the local risk premium change ΣL(wn−wo)]j , the complementary international risk premium change ΣInt(wn−wo)]j , the marginal
local arbitrage risk ΣLΣL(wn −wo)]j , and the marginal international arbitrage risk ΣΣInt(wn −wo)]j . The correlation is calculated for the 2,191 common
observations in the baseline sample. The baseline sample (N1 = 2, 191) comprises all stocks with at least 80 weekly dollar return observations for the period
of July 1, 1998, to July 1, 2000, and excludes stocks from the crisis countries Argentina and Turkey. The second sample (N2 = 2, 349) includes Argentine
and Turkish stocks. The third sample (N3 = 2, 414) reduces the inclusion threshold from 80 to 40 available weekly return observations, and the covariance
elements are calculated pairwise using all available return observations of any stock pair; Argentine and Turkish stocks are again included.

Corr{[ΣL
Nk
(wn − wo)]j , [Σ

L
Nl
(wn −wo)]j} N1 = 2, 191 N2 = 2, 349 N3 = 2, 414

N1 = 2, 191 1
N2 = 2, 349 0.9915 1
N3 = 2, 414 0.9875 0.9774 1

Corr{[ΣInt
Nk
(wn − wo)]j , [Σ

Int
Nl
(wn − wo)]j} N1 = 2, 191 N2 = 2, 349 N3 = 2, 414

N1 = 2, 191 1
N2 = 2, 349 0.8851 1
N3 = 2, 414 0.8755 0.7970 1

Corr{[ΣL
Nk

ΣL
Nk
(wn − wo)]j , [Σ

L
Nl
ΣL
Nl
(wn −wo)]j} N1 = 2, 191 N2 = 2, 349 N3 = 2, 414

N1 = 2, 191 1
N2 = 2, 349 0.9943 1
N3 = 2, 414 0.9902 0.9834 1

Corr{[ΣΣInt
Nk
(wn − wo)]j , [ΣΣ

Int
Nl
(wn −wo)]j} N1 = 2, 191 N2 = 2, 349 N3 = 2, 414

N1 = 2, 191 1
N2 = 2, 349 0.9102 1
N3 = 2, 414 0.9184 0.8434 1
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Table A2: Sample Robustness of Market Integration Test

The regressions in Table 5 are repeated using two extended samples. In panel A, I use a sample of 2,349 stocks which includes stocks from Argentina and
Turkey. A stock is included if it features at least 80 weekly dollar return observations for the period of July 1, 1998, to July 1, 2000. The covariance matrix
ΣG is calculated based on all common weekly return observations. Panel B extends the sample further to 2,414 stocks by requiring only 40 weekly dollar
return observation for sample inclusion. In this case the covariance matrix elements are estimated based on all available common return observations for
each stock pair. For both samples, the cumulative equity returns ∆rjtA in stock j (denominated in dollars and expressed in percentage points) for different
event windows (WS = window size) are regressed on a constant, the change in the local risk premium [ΣL(wn − wo)]j , the difference between the global
and local risk premium change [ΣInt(wn − wo)]j , the arbitrage risks for the local arbitrage portfolio [ΣLΣL(wn − wo)]j , and the incremental international
arbitrage risk to the global arbitrage risk [ΣΣInt(wn − wo)]j . Formally,

∆rjtA = c+ αL1 [Σ
L(wn −wo)]j + αInt1 [ΣInt(wn −wo)]j + βL1 [Σ

LΣL(wn − wo)]j + βInt1 [ΣΣInt(wn −wo)]j + μj .

The matrix ΣL is obtained by setting to zero all stock covariances across countries to capture only within country arbitrage. Also ΣInt = ΣG − ΣL and
ΣΣInt = ΣGΣG − ΣLΣL. The event window size is chosen in turn to start WS = 5, 10, 15, 20 trading days prior to December 1, 2000. Robust t-values are
reported in brackets. The last two columns report the significance level at which equality of the respective coefficients can be rejected.

WS c [t] αL1 [t] αInt1 [t] βL1 [t] βInt1 [t] R2 F -Test F -Test
αL1 = αInt1 βL1 = βInt1

Panel A: Position Buildup Event (Extended Sample with Argentine and Turkish Stocks, N=2,349)

5 0.90 [4.18] 6.7 [0.30] 62.7 [6.21] −0.020 [−0.94] −0.062 [−8.83] 0.064 0.013 0.050
10 −1.32 [−4.37] 54.4 [1.88] 103.8 [4.01] −0.057 [−2.05] −0.094 [−9.31] 0.053 0.089 0.194
15 −3.06 [−8.25] 152.2 [4.49] 107.5 [6.76] −0.137 [−4.18] −0.093 [−7.05] 0.051 0.189 0.187
20 −3.13 [−7.55] 181.2 [4.45] 137.2 [7.24] −0.194 [−4.93] −0.137 [−8.28] 0.076 0.291 0.166

Panel B: Position Buildup Event (Extended Sample with Lower Inclusion Threshold, N=2,414)

5 1.02 [4.94] 27.2 [1.29] 66.3 [6.79] −0.039 [−1.98] −0.063 [−9.25] 0.071 0.073 0.235
10 −0.96 [−2.85] 118.3 [2.52] 111.4 [8.02] −0.118 [−2.68] −0.097 [−9.67] 0.066 0.878 0.630
15 −2.62 [−6.14] 233.3 [3.78] 120.8 [7.41] −0.214 [−3.69] −0.100 [−7.62] 0.052 0.052 0.044
20 −2.56 [−5.26] 283.5 [3.89] 154.4 [7.94] −0.292 [−4.26] −0.147 [−8.91] 0.102 0.060 0.032
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Table A3: Market Integration Test under a Factor Structure for the Covariance Matrix

The regressions in Table 5, panel A are repeated using a factor model for the global covariance matrices ΣG. A factor based covariance matrix ΣG is
estimated using alternatively the first 20, 40 or 60 principle components of ΣG.The cumulative equity returns ∆rjtA in stock j (denominated in dollars
and expressed in percentage points) for different event windows (WS = window size) are regressed on a constant, the change in the risk local premium
[ΣL(wn − wo)]j , the difference between the global and local risk premium change [ΣInt(wn − wo)]j , the arbitrage risks for the local arbitrage portfolio
[ΣLΣL(wn − wo)]j , and the incremental international arbitrage risk to the global arbitrage risk [ΣΣInt(wn −wo)]j . Formally,

∆rjtA = c+ αL1 [Σ
L(wn −wo)]j + αInt1 [ΣInt(wn −wo)]j + βL1 [Σ

LΣL(wn − wo)]j + βInt1 [ΣΣInt(wn −wo)]j + μj .

The covariance matrix ΣG is estimated for two years of weekly dollar stock returns for the period of July 1, 1998, to July 1, 2000. The matrix ΣL is obtained
from ΣG by setting to zero all stock covariances across countries to capture only within country arbitrage. Also ΣInt = ΣG−ΣL and ΣΣInt = ΣGΣG−ΣLΣL.

The event window size is chosen in turn to start WS = 5, 10, 15, 20 trading days prior to December 1, 2000. Panels A, B, and C report the regression
coefficients under a fitted covariance structure with 20, 40, and 60 factors, respectively. Robust and country-clustered adjusted t-values are reported in
brackets. The last two columns report the significance level at which equality of the respective coefficients can be rejected.

WS c [t] αL1 [t] αInt1 [t] βL1 [t] βInt1 [t] R2 F -Test F -Test
αL1 = αInt1 βL1 = βInt1

Panel A: Position Buildup Event, 20 Factor Model for the Covariance Matrix (All Stocks, N=2,291)

5 1.82 [3.53] 42.4 [0.70] 65.7 [2.97] −0.055 [−1.01] −0.068 [−4.72] 0.105 0.701 0.819
10 0.11 [0.12] 86.0 [0.93] 109.3 [3.34] −0.089 [−1.09] −0.104 [−5.16] 0.098 0.759 0.838
15 −1.47 [−1.01] 164.1 [1.34] 130.4 [3.30] −0.148 [−1.33] −0.114 [−4.15] 0.061 0.758 0.743
20 −1.03 [−0.59] 245.5 [2.18] 166.4 [3.01] −0.254 [−2.53] −0.162 [−4.14] 0.132 0.374 0.272

Panel B: Position Buildup Event, 40 Factor Model for the Covariance Matrix (All Stocks, N=2,291)

5 1.57 [3.22] 10.4 [0.23] 51.4 [3.31] −0.029 [−0.66] −0.059 [−4.99] 0.100 0.444 0.525
10 −0.27 [−0.33] 43.4 [1.06] 84.4 [3.72] −0.056 [−1.56] −0.090 [−6.07] 0.090 0.269 0.318
15 −1.88 [−1.45] 140.3 [1.92] 95.8 [3.41] −0.133 [−2.02] −0.094 [−4.47] 0.053 0.502 0.519
20 −1.68 [−1.11] 182.2 [3.19] 121.6 [3.15] −0.205 [−3.94] −0.136 [−4.44] 0.122 0.254 0.144

Panel C: Position Buildup Event, 60 Factor Model for the Covariance Matrix (All Stocks, N=2,291)

5 1.48 [3.16] −8.7 [−0.19] 49.7 [3.28] −0.012 [−0.26] −0.058 [−5.06] 0.101 0.292 0.349
10 −0.34 [−0.42] 25.7 [0.70] 83.6 [3.95] −0.040 [−1.25] −0.089 [−6.44] 0.091 0.099 0.120
15 −1.97 [−1.52] 123.4 [1.93] 92.2 [3.48] −0.119 [−2.06] −0.091 [−4.54] 0.052 0.597 0.613
20 −1.82 [−1.24] 147.6 [3.00] 118.2 [3.23] −0.174 [−3.84] −0.133 [−4.53] 0.120 0.571 0.369
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Table A4: Robustness Test on Price Pressure Effects for the Speculative Position Build-Up

Panels A and B repeat the regression in Table 9 using only re-weighted stocks (i.e., excluding all added and deleted stocks). A price pressure proxy is defined
as a stock’s percentage weight change PP j = 2(wn − wo)j/(w

n + wo)j , . Panel B adds the absolute weight change (wn − wo)j as an additional (unscaled)
measure of price pressure. Panels C and E report regressions using only the absolute weight change as a proxy for price pressure. The baseline regression
results are added as Panel D for comparision. The cumulative event returns ∆rjtA (denominated in dollars and expressed in percentage points) over different
even windows (WS = window size) is regressed on a constant, the change in the risk premium ΣG(wn −wo)

j
and the arbitrage risk ΣGΣG(wn −wo)

j

of each stock j. Formally,
∆rjtA = c+ γ1PP

j + γ2(w
n − wo)j + α1[Σ

G(wn − wo)]j + β1[Σ
GΣG(wn − wo)]j + μj .

The covariance matrix ΣG is estimated for two years of weekly dollar stock returns for the period of July 1, 1998, to July 1, 2000. The event window size
is chosen alternatively to start WS = 5, 10, 15, 20 trading days prior to December 1, 2000. Robust and country-clustered adjusted t-values are reported in
parenthesis.

WS c [t] γ1 [t] γ2 [t] α1 [t] β1 [t] R2

Panel A: Position Buildup Event with Price Pressure Controls (All Reweighted Stocks, N=1,630)

5 2.43 [4.63] 2.13 [2.11] 39.1 [2.40] −0.058 [−4.57] 0.081
10 0.62 [0.86] 1.75 [1.22] 86.0 [3.85] −0.098 [−6.42] 0.075
15 −1.00 [−0.90] 2.29 [1.06] 102.4 [3.64] −0.100 [−4.54] 0.048
20 −1.23 [−0.87] 2.13 [0.97] 130.9 [4.06] −0.154 [−5.43] 0.093

Panel B: Position Buildup Event with Two Price Pressure Controls (All Reweigthed Stocks, N=1,630)

5 2.46 [4.81] 2.38 [2.23] −1, 852 [−3.09] 42.9 [2.61] −0.062 [−4.97] 0.086
10 0.63 [0.89] 1.87 [1.24] −844 [0.80] 87.7 [3.83] −0.099 [−6.60] 0.076
15 −0.97 [−0.87] 2.52 [1.10] −1, 694 [1.04] 105.9 [3.70] −0.103 [−4.65] 0.049
20 −1.23 [−0.87] 2.18 [0.95] −307 [−0.17] 131.5 [3.90] −0.155 [−5.22] 0.093

Panel C: Position Buildup Event and Absolute Weight Change Variable (All Stocks, N=2,291)

5 0.12 [0.18] −1, 152 [−2.21] 0.003
10 −2.35 [3.37] −755 [−2.14] 0.001
15 −4.19 [−4.83] −229 [−0.46] 0.000
20 −5.46 [−6.53] −905 [−0.63] 0.001

Panel D: Position Buildup Event with Baseline Specification (All Stocks, N=2,291)

5 1.54 [3.15] 41.8 [3.42] −0.064 [−4.97] 0.095
10 −0.25 [0.32] 80.6 [4.01] −0.099 [−6.43] 0.089
15 −2.04 [−1.58] 101.7 [3.71] −0.105 [−4.45] 0.051
20 −1.99 [−1.34] 124.5 [3.47] −0.161 [−4.58] 0.119

Panel E: Position Buildup Event with Absolute Weight Change Control (All Stocks, N=2,291)

5 1.56 [3.20] −840 [−2.55] 44.6 [3.56] −0.066 [−6.72] 0.096
10 −0.23 [0.30] −657 [−1.92] 82.8 [4.03] −0.100 [−6.49] 0.089
15 −2.03 [−1.56] −525 [−1.10] 103.5 [3.66] −0.106 [−4.43] 0.052
20 −1.98 [−1.31] −538 [−0.65] 126.3 [3.33] −0.162 [−4.47] 0.119
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Table A5: Mean Returns Double Sorted on Absolute Weight Changes and Optimal Arbitrage Portfolio Weights

Panels A and B report mean event returns for the 10 day and 20 day position buildup event window, respectively, under double sorting of all 2,291 stocks
into 25 equally large stocks groups. The first sort occurs based on the absolute weight change of a stocks, wn−wo, and a second sort is undertaken based
optimal portfolio weights given by linear combination [ΣG(wn−wo)]j − 0.001× [Σ

G
ΣG(w

n−wo)]j of the the return seeking and risk hedging portfolios.
The t-test given behind (below) each row (column) provides the t-statistics at which the hypothesis of equal means of qunatiles Q1 and Q5 can be rejected.

Panel A: Mean 10-Day Event Return for Double Sorted Quantiles (WS=10)
Optimal Portfolio Weights (Model) T-Test
Q1 Q2 Q3 Q4 Q5 Mean(Q5) =Mean(Q1)

Absolute Weight Change low high
Q1 low −8.35 −2.86 −1.02 −0.52 −0.43 5.02
Q2 −8.34 −1.29 −0.15 1.76 1.34 5.54
Q3 −6.77 −3.10 −3.06 −0.91 −3.04 2.46
Q4 −5.73 −0.08 −1.62 −0.37 −0.74 3.31
Q5 high −9.73 −1.37 −0.30 −0.72 −1.15 6.02
T-Test
Mean(Q5) =Mean(Q1) −0.79 1.30 0.63 −0.17 −0.60

Panel B: Mean 20-Day Event Return for Double Sorted Quantiles (WS=20)
Optimal Portfolio Weights (Model)
Q1 Q2 Q3 Q4 Q5 T-Test

Absolute Weight Change low high Mean(Q5) =Mean(Q1)
Q1 low −15.14 −7.18 −3.55 −3.44 −3.30 4.97
Q2 −12.99 −3.13 −2.47 −1.32 −1.38 4.77
Q3 −11.55 −5.45 −6.94 −1.99 −6.41 2.30
Q4 −10.06 −5.58 −3.25 −2.03 −1.06 4.10
Q5 high −19.43 −3.25 −2.31 −1.36 −1.76 7.35
T-Test
Mean(Q5) =Mean(Q1) −1.57 2.29 0.67 −0.92 0.77
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